Answer:
Option B,C
Explanation:
We have
$2(\cos\beta-\cos\alpha)+\cos\alpha\cos\beta=1$
or $4(\cos\beta-\cos\alpha)+2\cos\alpha\cos\beta=2$
$\Rightarrow$ $1-\cos\alpha+\cos\beta-\cos\alpha\cos\beta$
$=3+3\cos\alpha-3\cos\beta-3\cos\alpha\cos\beta$
$\Rightarrow$ $(1-\cos\alpha)(1+\cos\beta)$
=$3(1-\cos\alpha)(1+\cos\beta)$
$\Rightarrow$ $\frac{(1-\cos\alpha)}{(1+\cos\alpha)}=\frac{3(1-\cos\beta)}{(1+\cos\beta}$
$\Rightarrow$ $\tan^{2}\frac{\alpha}{2}=3\tan^{2}\frac{\beta}{2}$
$\therefore$ $\tan\frac{\alpha}{2}\pm \sqrt{3}\tan\frac{\beta}{2}=0$