<<12345>>
16.

Let α and β be non zero real numbers such $2(\cos\beta-\cos\alpha)+\cos\alpha\cos\beta=1$ . Then which of the following is/are true?


A) $\sqrt{3}\tan(\frac{\alpha}{2})-\tan(\frac{\beta}{2})=0$

B) $\tan(\frac{\alpha}{2})-\sqrt{3}\tan(\frac{\beta}{2})=0$

C) $\tan(\frac{\alpha}{2})+\sqrt{3}\tan(\frac{\beta}{2})=0$

D) $\sqrt{3}\tan(\frac{\alpha}{2})+\tan(\frac{\beta}{2})=0$



17.

If the line $x=\alpha$ divides the area of region R={(x,y) $\in$ R2 : x3≤ y≤ x, o≤x≤1 } into two equal parts, then


A) $2\alpha^{4}-4\alpha^{2}+1=0$

B) $\alpha^{4}+4\alpha^{2}-1=0$

C) $\frac{1}{2}<\alpha<1$

D) $0<\alpha\leq\frac{1}{2}$



18.

If f:R→ R  is differentiable function such that f'(x) >2f(x) for all x ε R, and f(0)=1 then


A) $f(x)\gt e^{2x}in (0,\infty)$

B) $f(x)\lt;e^{2x}in (0,\alpha)$

C) f(x) is increasing in $(0,\infty)$

D) f(x) decresing in $(0,\infty)$



19.

The equation of the plane passing through the point(1,1,1) and perpendicular to the planes

2x+y-2z=5 and 3x-6y-2z=7


A) 14x+2y-15z=1

B) -14x+2y+15z=3

C) 14x-2y+15z=27

D) 14x+2y+15z=31



20.

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

OP.OQ+OR.OS=OR.OP+OQ.OS=OQ.OR+OP.OS

  Then the triangle PQR has S as its


A) centroid

B) orthocentre

C) incentre

D) circumcentre



<<12345>>